mysql - Counting a row within an overall listing of data -
this question has answer here:
- mysql row position in order by 6 answers
i have table contains matches particular competition.
when select matchidauto 4050, need know match 15 of total 29 matches in competition.
i can determine there 29 matches simple select count(*) match2 competitionidauto = 669
does know of way of determining without needing loop through example 4050 match 15?
-- -- table structure table `match2` -- create table if not exists `match2` ( `matchidauto` int(10) not null auto_increment, `competitionidauto` int(10) not null default '0', `teamhome` varchar(100) not null default '0', `teamaway` varchar(100) not null default '0', `matchdate` date not null default '0000-00-00', `matchtime` time not null default '00:00:00', `matchstarttime` datetime not null default '0000-00-00 00:00:00', `venueidauto` int(10) not null default '0', `gameended` int(1) not null default '0', `predictionsgameended` int(1) not null default '0', `result` varchar(50) not null default '', `resulturl` varchar(100) not null default '', `datecreated` date not null default '0000-00-00', `datecreatedtimestamp` int(10) not null default '0', `datemodified` date not null default '0000-00-00', `usercreated` varchar(50) not null default '', `disablethismatch` int(1) not null default '0', `allocatedto` varchar(25) not null, `matchupdated` tinyint(1) not null default '0', primary key (`matchidauto`) ) engine=myisam default charset=latin1 auto_increment=4234 ; -- -- dumping data table `match2` -- insert `match2` (`matchidauto`, `competitionidauto`, `teamhome`, `teamaway`, `matchdate`, `matchtime`, `matchstarttime`, `venueidauto`, `gameended`, `predictionsgameended`, `result`, `resulturl`, `datecreated`, `datecreatedtimestamp`, `datemodified`, `usercreated`, `disablethismatch`, `allocatedto`, `matchupdated`) values (4036, 669, 'brisbane heat women', 'hobart hurricanes women', '2016-01-01', '03:40:00', '2015-12-31 21:40:00', 7, 0, 0, '', '', '2015-11-13', 1447473564, '2015-11-13', 'jerry', 0, 'jerry', 0), (4037, 669, 'perth scorchers women', 'adelaide strikers women', '2016-01-01', '04:10:00', '2015-12-31 22:10:00', 3, 0, 0, '', '', '2015-11-13', 1447474751, '2015-11-13', 'jerry', 0, 'jerry', 0), (4038, 669, 'sydney thunder women', 'brisbane heat women', '2016-01-02', '01:00:00', '2016-01-01 19:00:00', 316, 0, 0, '', '', '2015-11-13', 1447474966, '2015-11-13', 'jerry', 0, 'jerry', 0), (4039, 669, 'melbourne stars women', 'melbourne renegades women', '2016-01-02', '02:40:00', '2016-01-01 20:40:00', 8, 0, 0, '', '', '2015-11-13', 1447475064, '2015-11-13', 'jerry', 0, 'jerry', 0), (4040, 669, 'sydney thunder women', 'hobart hurricanes women', '2016-01-02', '07:00:00', '2016-01-02 01:00:00', 7, 0, 0, '', '', '2015-11-13', 1447475178, '2015-11-13', 'jerry', 0, 'jerry', 0), (4041, 669, 'hobart hurricanes women', 'brisbane heat women', '2016-01-03', '00:00:01', '2016-01-02 18:00:01', 316, 0, 0, '', '', '2015-11-13', 1447475258, '2015-11-13', 'jerry', 0, 'jerry', 0), (4042, 669, 'melbourne renegades women', 'melbourne stars women', '2016-01-03', '03:30:00', '2016-01-02 21:30:00', 8, 0, 0, '', '', '2015-11-13', 1447475350, '2015-11-13', 'jerry', 0, 'jerry', 0), (4043, 669, 'hobart hurricanes women', 'sydney thunder women', '2016-01-03', '04:00:00', '2016-01-02 22:00:00', 316, 0, 0, '', '', '2015-11-13', 1447475429, '2015-11-13', 'jerry', 0, 'jerry', 0), (4044, 669, 'adelaide strikers women', 'melbourne stars women', '2016-01-07', '23:00:00', '2016-01-07 17:00:00', 310, 0, 0, '', '', '2015-11-13', 1447475525, '2015-11-13', 'jerry', 0, 'jerry', 0), (4045, 669, 'melbourne renegades women', 'sydney sixers women', '2016-01-08', '03:30:00', '2016-01-07 21:30:00', 310, 0, 0, '', '', '2015-11-13', 1447475613, '2015-11-13', 'jerry', 0, 'jerry', 0), (4046, 669, 'sydney sixers women', 'adelaide strikers women', '2016-01-08', '23:00:00', '2016-01-08 17:00:00', 310, 0, 0, '', '', '2015-11-13', 1447475711, '2015-11-13', 'jerry', 0, 'jerry', 0), (4047, 669, 'adelaide strikers women', 'sydney sixers women', '2016-01-09', '03:30:00', '2016-01-08 21:30:00', 310, 0, 0, '', '', '2015-11-13', 1447475802, '2015-11-13', 'jerry', 0, 'jerry', 0), (4048, 669, 'melbourne renegades women', 'sydney thunder women', '2016-01-09', '03:40:00', '2016-01-08 21:40:00', 317, 0, 0, '', '', '2015-11-13', 1447476726, '2015-11-13', 'jerry', 0, 'jerry', 0), (4049, 669, 'melbourne stars women', 'adelaide strikers women', '2016-01-09', '23:00:00', '2016-01-09 17:00:00', 310, 0, 0, '', '', '2015-11-13', 1447476819, '2015-11-13', 'jerry', 0, 'jerry', 0), (4050, 669, 'sydney sixers women', 'melbourne renegades women', '2016-01-10', '03:30:00', '2016-01-09 21:30:00', 310, 0, 0, '', '', '2015-11-13', 1447476917, '2015-11-13', 'jerry', 0, 'jerry', 0), (4051, 669, 'melbourne stars women', 'sydney thunder women', '2016-01-15', '03:30:00', '2016-01-14 21:30:00', 318, 0, 0, '', '', '2015-11-13', 1447477125, '2015-11-13', 'jerry', 0, 'jerry', 0), (4052, 669, 'hobart hurricanes women', 'sydney sixers women', '2016-01-15', '03:30:00', '2016-01-14 21:30:00', 319, 0, 0, '', '', '2015-11-13', 1447477325, '2015-11-13', 'jerry', 0, 'jerry', 0), (4053, 669, 'adelaide strikers women', 'melbourne renegades women', '2016-01-15', '03:30:00', '2016-01-14 21:30:00', 320, 0, 0, '', '', '2015-11-13', 1447477775, '2015-11-13', 'jerry', 0, 'jerry', 0), (4054, 669, 'adelaide strikers women', 'brisbane heat women', '2016-01-15', '23:30:00', '2016-01-15 17:30:00', 320, 0, 0, '', '', '2015-11-13', 1447477920, '2015-11-13', 'jerry', 0, 'jerry', 0), (4055, 669, 'sydney sixers women', 'sydney thunder women', '2016-01-16', '02:40:00', '2016-01-15 20:40:00', 10, 0, 0, '', '', '2015-11-13', 1447478942, '2015-11-13', 'jerry', 0, 'jerry', 0), (4056, 669, 'hobart hurricanes women', 'melbourne stars women', '2016-01-16', '03:30:00', '2016-01-15 21:30:00', 315, 0, 0, '', '', '2015-11-13', 1447479213, '2015-11-13', 'jerry', 0, 'jerry', 0), (4057, 669, 'perth scorchers women', 'melbourne renegades women', '2016-01-16', '04:10:00', '2016-01-15 22:10:00', 320, 0, 0, '', '', '2015-11-13', 1447479324, '2015-11-13', 'jerry', 0, 'jerry', 0), (4058, 669, 'sydney thunder women', 'melbourne stars women', '2016-01-16', '23:00:00', '2016-01-16 17:00:00', 321, 0, 0, '', '', '2015-11-13', 1447479527, '2015-11-13', 'jerry', 0, 'jerry', 0), (4059, 669, 'sydney sixers women', 'hobart hurricanes women', '2016-01-16', '23:00:00', '2016-01-16 17:00:00', 322, 0, 0, '', '', '2015-11-13', 1447479733, '2015-11-13', 'jerry', 0, 'jerry', 0), (4060, 669, 'melbourne renegades women', 'adelaide strikers women', '2016-01-16', '23:30:00', '2016-01-16 17:30:00', 320, 0, 0, '', '', '2015-11-13', 1447479830, '2015-11-13', 'jerry', 0, 'jerry', 0), (4061, 669, 'melbourne renegades women', 'perth scorchers women', '2016-01-17', '04:10:00', '2016-01-16 22:10:00', 320, 0, 0, '', '', '2015-11-13', 1447479954, '2015-11-13', 'jerry', 0, 'jerry', 0), (4064, 669, 'semi final', 'semi final', '2016-01-21', '00:00:01', '2016-01-20 18:00:01', 323, 0, 0, '', '', '2015-11-14', 1447523483, '2015-11-14', 'jerry', 0, 'jerry', 0), (4065, 669, 'semi final', 'semi final', '2016-01-22', '00:00:01', '2016-01-21 18:00:01', 323, 0, 0, '', '', '2015-11-14', 1447523558, '2015-11-14', 'jerry', 0, 'jerry', 0), (4066, 669, 'final', 'final', '2016-01-24', '00:00:01', '2016-01-23 18:00:01', 323, 0, 0, '', '', '2015-11-14', 1447523614, '2015-11-14', 'jerry', 0, 'jerry', 0);
i assume matches inserted in ascending order (by date) first match hast lowest matchidauto.
so try this
select m.matchidauto, count( * ) row_number match2 m join match2 m2 on m.matchidauto >= m2.matchidauto m.matchidauto = 4050 group m.matchidauto
output
+-------------+------------+ | matchidauto | row_number | +-------------+------------+ | 4050 | 15 | +-------------+------------+
Comments
Post a Comment