python - ValueError: Unknown label type: array([0.11],...) when making extra trees model -


i trying use trees classifier on dataset, , reason @

model.fit(trainx,trainy) 

part, throws me a

valueerror: unknown label type: array([[ 0.11],        [ 0.12],        [ 0.64],        [ 0.83],        [ 0.33],        [ 0.72],        [ 0.49], 

error. array([0.11] trainy data. i've searched stack overflow , apparently due sklearn not recognizing data type, ive tried from

trainy = np.asarray(trainy,dtype=float) trainy=trainy.astype(float) 

and doesnt work, though type(trainy) shows numpy.ndarray. can point me in right direction here?

here's code:

import pandas pd import numpy np sklearn.preprocessing import labelencoder sklearn import metrics sklearn.ensemble import extratreesclassifier sklearn import cross_validation   def preprocess():     df= pd.read_csv('c:/users/x/desktop/managerial_and_decision_economics_2013_video_games_dataset.csv',encoding ='iso-8859-1')     #drop non ea     df = df[df['ea'] ==1]     #change categorical variables     le = labelencoder()     nonnumeric_columns=['console','title','publisher','genre']     feature in nonnumeric_columns:         df[feature] = le.fit_transform(df[feature])     #set dataset , target variables     dataset =df.ix[:, df.columns != 'us sales (millions)']     target = df['us sales (millions)']      trainx, testx, trainy, testy = cross_validation.train_test_split(         dataset, target, test_size=0.3, random_state=0)     #attempt fix error?     trainx=np.array(trainx)     trainy = np.asarray(trainy, dtype="float")     return trainx,testx,trainy,testy  def classifier():     model =  extratreesclassifier(n_estimators=250,                               random_state=0)     model.fit(trainx,trainy)     return model.score(testx,testy)   trainx,testx,trainy,testy=preprocess() 

i'm using scikit-learn 0.17 on python 3.5

your labels [[0.11], [ 0.12],.... . should use extratreesregressor instead of extratreesclassifier

from source code of forestclassifier:

 y : array-like, shape = [n_samples] or [n_samples, n_outputs]             target values (class labels in classification, real numbers in             regression). 

Comments

Popular posts from this blog

javascript - jQuery: Add class depending on URL in the best way -

caching - How to check if a url path exists in the service worker cache -

Redirect to a HTTPS version using .htaccess -